CNN Feature boosted SeqSLAM for Real-Time Loop Closure Detection

نویسندگان

  • Dongdong Bai
  • Chaoqun Wang
  • Bo Zhang
  • Xiaodong Yi
  • Xuejun Yang
چکیده

Loop closure detection (LCD) is an indispensable part of simultaneous localization and mapping systems (SLAM); it enables robots to produce a consistent map by recognizing previously visited places. When robots operate over extended periods, robustness to viewpoint and condition changes as well as satisfactory real-time performance become essential requirements for a practical LCD system. This paper presents an approach to directly utilize the outputs at the intermediate layer of a pre-trained convolutional neural network (CNN) as image descriptors. The matching location is determined by matching the image sequences through a method called SeqCNNSLAM. The utility of SeqCNNSLAM is comprehensively evaluated in terms of viewpoint and condition invariance. Experiments show that SeqCNNSLAM outperforms state-of-the-art LCD systems, such as SeqSLAM and Change Removal, in most cases. To allow for the real-time performance of SeqCNNSLAM, an acceleration method, A-SeqCNNSLAM, is established. This method exploits the location relationship between the matching images of adjacent images to reduce the matching range of the current image. Results demonstrate that acceleration of 4-6 is achieved with minimal accuracy degradation, and the method’s runtime satisfies the real-time demand. To extend the applicability of A-SeqCNNSLAM to new environments, a method called O-SeqCNNSLAM is established for the online adjustment of the parameters of A-SeqCNNSLAM.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tree of Words for Visual Loop Closure Detection in Urban SLAM

This paper introduces vision based loop closure detection in Simultaneous Localisation And Mapping (SLAM) using Tree of Words. The loop closure performance in a complex urban environment is examined and an additional feature is suggested for safer matching. A SLAM ground experiment in an urban area is performed using Tree of Words, a delayed state information filter and planar laser scans for r...

متن کامل

Original Loop-Closure Detection Algorithm for Monocular vSLAM

Vision-based simultaneous localization and mapping (vSLAM) is a well-established problem in mobile robotics and monocular vSLAM is one of the most challenging variations of that problem nowadays. In this work we study one of the core post-processing optimization mechanisms in vSLAM, e.g. loop-closure detection. We analyze the existing methods and propose original algorithm for loop-closure dete...

متن کامل

Real-Time Interference Detection in Tracking Loop of GPS Receiver

Global Positioning System (GPS) spoofing could pose a major threat for GPS navigation ‎systems, so the GPS users have to gain a better understanding of the broader implications of ‎GPS.‎ In this paper, a plenary anti-spoofing approach based on correlation is proposed to distinguish spoofing effects. The suggested ‎method can be easily implemented in tracking loop of GPS receiver...

متن کامل

Is Faster R-CNN Doing Well for Pedestrian Detection?

Detecting pedestrian has been arguably addressed as a special topic beyond general object detection. Although recent deep learning object detectors such as Fast/Faster R-CNN [1, 2] have shown excellent performance for general object detection, they have limited success for detecting pedestrian, and previous leading pedestrian detectors were in general hybrid methods combining hand-crafted and d...

متن کامل

Ensemble of Bayesian Filters for Loop Closure Detection

Loop closure detection for visual only simultaneous localization and mapping needs effective feature descriptors to obtain good performance results. Currently, the most widely used feature description is the global or local descriptor such as color histogram and Speeded Up Robust Features. The global features can be computed either by considering all points within a region, or only for those po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1704.05016  شماره 

صفحات  -

تاریخ انتشار 2017